

MUTAH UNIVERSITY Faculty of Engineering Department of Chemical Engineering

Biochemical Engineering Course syllabus

Course Code	Course Name	Credits	Contact Hours
0404590	Biochemical Engineering	3	Office hours

INSTRUCTO	INSTRUCTOR/COORDINATOR					
Name	Rasha A. Hajarat					
Email	hajarat@mutah.edu.jo					
Website						

TEXTBOOK

- 1- Biochemical engineering fundamentals by Bailey and Ollis.
- 2- Bioprocess engineering: basic concepts by Shuler and Kargi.

Other Supplemental Materials

1- Perry's chemical engineering handbook, by R. Perry, and D. Green.

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

- **1.** Introduce modelling of biological activity in homogenous biological system by using kinetics and mass balance.
- 2. Extend kinetics-based reactor design for biological processes by consideration of physical aspects associated with bioreactor.

B. Pre-requisites (P) or Co-requisites (C)

(P) Chemical engineering reaction (2) 0404491

C. Course Type (Required or Elective)

(E) Elective

SPECIFIC GOALS

A. Specific Outcomes of Instruction

- **1.** Microbial activity, biological rate equations. (SOL 1, 2)
- 2. Cultivation of living cells in a batch culture. (SOL 1, 2)
- **3.** Cultivation of living cells in a continuous culture. (SOL 1, 2)
- 4. Oxygen vs. carbon substrate limitation for living cells. (SOL 1, 2)
- 5. Cultivation of living cells in a variable volume culture. (SOL 1, 2)
- 6. Bioreactor design and configuration. (SOL 1, 2)
- 7. Rheology and mixing. (SOL 1, 2)
- 8. Use polymath program is solving problems. (SOL 1, 2, 6)

B. Student Outcomes Addressed by the Course

1	2	3	4	5	6	7		
Х	Х				х			

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Biological rate equations	1	3 hrs per week
Batch culture	1	3 hrs per week
Continuous culture	2	3 hrs per week
Oxygen vs. carbon substrate limitation	2	3 hrs per week
Variable volume culture	2	3 hrs per week
Bioreactor design and configuration	2	3 hrs per week
Rheology and mixing	2	3 hrs per week
Heat transfer	2	3 hrs per week
Application using polymath	2	3 hrs per week
Total	16	

METHODS OF ASSESSMENT						
No.	Method of assessment	Week and Date	%			
1	Mid exam	9 th week	30			
3	Project / assignments	Project	20			
4	4 Final exam End of Semester		50			
Total						